visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-10 16:00 
일시 Nov. 10th(Thu) 4 p.m. 
장소 E6-2. #1323(1st fl.) 
연사 Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 날짜 장소 제목
527 2018-07-12 17:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6)  The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
526 2017-12-14 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  Exploring the Universe via GWs in the era of multi-messenger astronomy
525 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
524 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
523 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
522 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
521 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
520 2019-09-10 15:00  #2502, E6-2  (2+1) D Duality Web from 3D Euclidean Lattice file
519 2020-09-28 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond(Fourth Forum) file
518 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정 file
517 2023-09-13 16:00  E6-2, #2502  [High Energy Theory Seminar] Cosmic Birefringence from Dark Photon
516 2018-09-04 14:30  E6-2. 2st fl. #2502  Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses file
515 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
514 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
513 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
512 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
511 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
510 2019-09-27 16:00  E6-2. 1st fl. #1323  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
509 2019-09-27 14:30  E6-2. 1st fl. #1323  Spin-charge conversion in topological insulators for spintronic applications file
508 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials