visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-10-18 15:00 
일시 Oct. 18 (Tue.), 3PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
527 2018-07-12 17:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6)  The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
526 2017-12-14 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  Exploring the Universe via GWs in the era of multi-messenger astronomy
525 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
524 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
523 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
522 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
521 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
520 2019-09-10 15:00  #2502, E6-2  (2+1) D Duality Web from 3D Euclidean Lattice file
519 2020-09-28 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond(Fourth Forum) file
518 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정 file
517 2023-09-13 16:00  E6-2, #2502  [High Energy Theory Seminar] Cosmic Birefringence from Dark Photon
516 2018-09-04 14:30  E6-2. 2st fl. #2502  Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses file
515 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
514 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
513 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
512 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
511 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
510 2019-09-27 16:00  E6-2. 1st fl. #1323  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
509 2019-09-27 14:30  E6-2. 1st fl. #1323  Spin-charge conversion in topological insulators for spintronic applications file
508 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials