Physics
visual01

세미나

  • 메인
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Apr. 28 (Fri.), 02:30 PM 
연사 Dr. JeongYoung Park Graduate School of EEWS, KAIST 

 

Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion

 

Dr. JeongYoung Park

Graduate School of EEWS, KAIST

Apr. 28 (Fri.), 02:30 PM

E6-2. 1st fl. #1323

 

 

Abstract: 

A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance. 

In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.

 

 

 

번호 일시 장소 연사 제목
공지 2017/03/06 - 05/29  Seminar Room 1501  이종봉 박사 (POSTECH) 외  Spring 2017: Physics Colloquium
공지 2017/03/21 - 06/08  Seminar Room 1323  조길영 박사(KAIST) 외  Spring 2017: Physics Seminar Serises
133 Sep. 29th(Thu), 4PM  E6-2 #1323 (1st floor)  Dr. Sangyoon Han, Department of Physics, KAIST  Large-scale Silicon Photonic MEMS Switches
132 Sep. 29 (Thu), 4:00 PM  E6-2. #2501(2nd fl.)  Dr. Minu Kim, Institute for Basic Science, Seoul National University  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
131 Sep. 22, 2016(Thu), 3:30 PM  #1323(E6-2, 1st fl.)  Dr. Haiyang Yan (Institute of Nuclear Physics and Chemistry)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
130 Sep. 22, 2016(Thu), 3:30 PM  #1323(E6-2, 1st fl.)  Dr. Haiyang Yan (Institute of Nuclear Physics and Chemistry)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
129 Sep. 02(Fri) 4:00 PM  E6-2(1st fl) #1323  Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST  Quantum Electrical Transport in Topological Insulator Nanowires
128 Sep. 02(Fri) 2:30 PM  E6-2(1st fl.), #1323  Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
127 Oct. 27th(Thu) 4PM  #1323(E6-2)  Dr. 이 강 희, KAIST, Mechnical Engineering  Terahertz Metal Optics
126 Oct. 18 (Tue.), 3PM  E6-2. 1st fl. #1323  Dr. JunHo Suh, Korea Research Institute of Standards and Science  “Hybrid quantum systems with mechanical oscillators”
125 Oct. 18 (Tue.), 1:30 PM  1st fl. #1323(E6-2)  Dr. Chan-Ho Yang, Department of Physics, KAIST  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
124 Oct. 17th (Mon) 11:00 AM  #1323,(E6-2, 1st fl.)  Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam  IMS and examples of the studies on optoelectronic materials
123 Oct. 07 (Fri), 4:00 PM  E6-2. #1323(1st fl.)  Dr. Choong Hyun Kim,IBS-CCES, Seoul National University  “Tilt engineering of 4d and 5d transition metal oxides?”
122 Oct. 07 (Fri), 1:30 PM  E6-2. #1323(1st fl.)  Dr. Suk Bum Chung, IBS-CCES , Seoul National University  “Symmetry and topology in transition metal dichalcogenide?”
121 Nov. 29(Tue) 4p.m.  #1323(E6-2. 1st fl.)  Dr. SungBin Lee, KAIST  Symmetry Protected Kondo Metals and Their Phase Transitions
120 Nov. 24(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jai-Min Choi, Chonbuk National Univiersity  Harmonic oscillator physics with single atoms in a state-selective optical potential
119 Nov. 1st (Tue), 10:30AM  #1323(E6-2 1st fl.)  Dr. Gadi Eisenstein, Technion  Time scale dependent dynamics in InAs/InP quantum dot gain media
118 Nov. 18th (Fri) 10:30 a.m.  #5318(5th fl.)  Dr. 최 순 원, Havard University  Non-equilibrium many-body spin dynamics in diamond
117 Nov. 16 (Wed), 4p.m.  #1323(E6-2. 1st fl.)  Dr. Heung-Sik Kim , University of Toronto  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
116 Nov. 11th(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Keun Su Kim, POSTECH  Bandgap Engineering of Black Phosphorus
115 Nov. 11th (Fri), 4 p.m.  #1323(E6-2. 1st fl.)  Dr. Bohm-Jung Yang, SNU  Dirac fermions in condensed matters
114 Nov. 10th(Thu) 4 p.m.  E6-2. #1323(1st fl.)  Prof. Min Seok Jang, Electrical Engineering, KAIST  Low Dimensional Active Plasmonics and Electron Optics in Graphene