• 메인
  • >
  • >
Venue #1323(E6-2. 1st fl.) 
Date & Time Feb. 1 (Wed.), 2p.m. 
Speaker Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons


Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)


Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.


[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).


Contact: SunYoung Choi, (



Center for Quantum Coherence in Condensed Matter, KAIST

번호 Date & Time Venue Speaker 제목
공지 2017/09/14 - 12/07  Seminar Room #1323  Prof. 정광용 교수(Gacheon Univ) and etc.  Fall 2017: Physics Seminar Serises
공지 2017/09/04 - 12/04  Seminar Room 1501  Prof. Sangsu Bae(Hanyang Univ.) and etc.  Fall 2017: Physics Colloquium
102 Jun. 16 (Thu) 4PM  #1323(E6-2, 1st fl.)  Hyochul Kim, Samsung Advanced Institute of Technology  Quantum information processing using quantum dots and photonic crystal cavities
101 Jun. 14 (Tue) 4PM  Seminar Room (#2502, 2nd fl.)  Young-Sik Ra, Université Pierre et Marie Curie  Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction
100       Spring 2017: Physics Colloquium file
99 2017/03/21 - 06/08  Seminar Room 1323  조길영 박사(KAIST) 외  Spring 2017: Physics Seminar Serises file
98 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
» Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)  Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo  Quantum electron optics using flying electrons
96 2017.1.9(Mon), 4PM  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Prof. John Michael Kosterlitz, Brown University  Topological Defects and Phase Transitions
95 Dec. 12th (Mon)  1:30p.m. #1323(E6-2. 1st fl.)  Dongjoon Song , AIST  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
94 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems
93 Dec. 9(Fri), 4p.m.  #1323(E6-2. 1st fl.  Dr. Kun Woo Kim, KIAS  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
92 Dec. 8(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jinhyoung Lee, Hanyang University  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
91 Nov. 29(Tue) 4p.m.  #1323(E6-2. 1st fl.)  Dr. SungBin Lee, KAIST  Symmetry Protected Kondo Metals and Their Phase Transitions
90 Nov. 24(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jai-Min Choi, Chonbuk National Univiersity  Harmonic oscillator physics with single atoms in a state-selective optical potential
89 Nov. 18th (Fri) 10:30 a.m.  #5318(5th fl.)  Dr. 최 순 원, Havard University  Non-equilibrium many-body spin dynamics in diamond
88 Nov. 16 (Wed), 4p.m.  #1323(E6-2. 1st fl.)  Dr. Heung-Sik Kim , University of Toronto  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
87 Nov. 10th(Thu) 4 p.m.  E6-2. #1323(1st fl.)  Prof. Min Seok Jang, Electrical Engineering, KAIST  Low Dimensional Active Plasmonics and Electron Optics in Graphene
86 Nov. 11th (Fri), 4 p.m.  #1323(E6-2. 1st fl.)  Dr. Bohm-Jung Yang, SNU  Dirac fermions in condensed matters
85 Nov. 11th(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Keun Su Kim, POSTECH  Bandgap Engineering of Black Phosphorus