visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Sep. 02(Fri) 4:00 PM 
Venue E6-2(1st fl) #1323 
Speaker Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST 

Quantum Electrical Transport in Topological Insulator Nanowires

 

Sep. 02(Fri) 4:00 PM, E6-2(1st fl) #1323
Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST


Abstract:
Single-crystalline nanostructures of β-Ag2Se and Bi2Se3, three-dimensional(3D) topological insulators (TIs), were synthesized using the chemical vapor transport method. The topological surface states were verified by measuring electronic transport properties such as the weak antilocalization effect, Aharonov-Bohm oscillations, and Shubnikov-de Haas oscillations.[1,2] The band inversion in β-Ag2Se is attributed to a strong spin-orbit coupling and Ag-Se bonding hybridization. The superconducting junctions of β-Ag2Se nanostructures were also made using superconducting Al electrodes.[3] Very large supercurrent in the junction enables us to observe the macroscopic quantum tunneling behavior in the narrow junction limit, which is in contrary to the PbS-nanowire-based superconducting junctions[4]. Our observations would provide new meaningful information about 3D TIs, which could be useful for spintronics and superconducting quantum information devices applications.


1. J. Kim, A. Hwang, S.-H. Lee, S.-H. Jhi, S. Lee, Y. C. Park, S.-I Kim, H.-S. Kim, Y.-J. Doh*, J. Kim*, B. Kim*, ACS Nano (2016) 10, 3936.
2. H.-S. Kim, N.-H. Kim, Y. Yang, X. Peng, D. Yu, Y.-J. Doh*, (in preparation)
3. J. Kim, B.-K. Kim, H.-S. Kim, B. Kim*, Y.-J. Doh*, (in preparation).
4. B.-K. Kim, H.-S. Kim, Y. Yang, X. Peng, D. Yu, Y.-J. Doh*, ArXiv:1607.07151 (submitted).

 

Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

 

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
81   Seminar Room #1323(E6-2)  Search for dark sector particles in the B-factory experiments
80   #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials
79   E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
78   1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
77   E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
76   E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
75   E6-2, #1323  2016 Fall, Physics Seminar Serises file
74   E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
73   E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
72   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
71   E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
70   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
69   Natual Scien Bldg.(E6)m #1501  Physics Colloquium : 2016 Fall file
»   E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
67   E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
66   KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
65   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
64   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
63   #1323(E6-2. 1st fl.)  Let there be topological superconductors
62   #1323(E6-2. 1st fl.)  Isostatic magnetism